首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90541篇
  免费   8234篇
  国内免费   39篇
  2021年   1059篇
  2020年   648篇
  2019年   820篇
  2018年   1064篇
  2017年   985篇
  2016年   1698篇
  2015年   2714篇
  2014年   3104篇
  2013年   4234篇
  2012年   5181篇
  2011年   5314篇
  2010年   3565篇
  2009年   3251篇
  2008年   4738篇
  2007年   4906篇
  2006年   4610篇
  2005年   4596篇
  2004年   4665篇
  2003年   4270篇
  2002年   4193篇
  2001年   1286篇
  2000年   1034篇
  1999年   1256篇
  1998年   1357篇
  1997年   1023篇
  1996年   850篇
  1995年   887篇
  1994年   908篇
  1993年   823篇
  1992年   965篇
  1991年   931篇
  1990年   911篇
  1989年   905篇
  1988年   812篇
  1987年   772篇
  1986年   704篇
  1985年   855篇
  1984年   991篇
  1983年   889篇
  1982年   958篇
  1981年   944篇
  1980年   878篇
  1979年   723篇
  1978年   751篇
  1977年   701篇
  1976年   696篇
  1975年   571篇
  1974年   675篇
  1973年   625篇
  1972年   426篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
61.
62.
63.
The gorgoniid Eugorgia is exclusively an eastern Pacific genus. It has a wide geographic and bathymetric range of distribution, found from California to Perú and extends down to 65 m deep. Two new species are herein described. The morphological characters were analyzed and illustrated by light and scanning electron microscopy. Eugorgia beebei sp. n. can be distinguished by its white, ascending, sparse colony growth. Eugorgia mutabilis sp. n. can be distinguished by its white colony that changes color after collection, and the conspicuous sharp-crested disc sclerites. From a morphological point of view the new species are related to the daniana-group, the rubens-group and the siedenburgae-group of Eugorgia; their affiliations, and the proposal of a new group are discussed. These new species increases the number of species in the genus to 15, and contribute to the knowledge of the eastern Pacific octocoral biodiversity.  相似文献   
64.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   
65.
Practically all animals must find food while avoiding predators.An individual's perception of predation risk may depend on manyfactors, such as distance to refuge and group size, but it isunclear whether individuals respond to different factors ina similar manner. We tested whether flocks of foraging starlingsresponded in the same way to an increased perception of predationrisk by assessing three factors: (1) neighbor distances, (2)habitat obstruction, and (3) recent exposure to a predator.We found that in all three scenarios of increased risk, starlingsreduced their interscan intervals (food-searching bouts), whichincreased the frequency of their vigilance periods. We thenexamined how one of these factors, habitat obstruction, affectedescape speed by simulating an attack with a model predator.Starlings were slower to respond in visually obstructed habitats(long grass swards) and slower when they had their head downin obstructed habitats than when they had their head down inopen habitats. In addition, reaction times were quicker whenstarlings could employ their peripheral fields of vision. Ourresults demonstrate that different sources of increased riskcan generate similar behavioral responses within a species.The degree of visibility in the physical and social environmentaffects both the actual and perceived risk of predation.  相似文献   
66.
67.
John R. Polito 《CMAJ》2008,179(10):1037-1038
  相似文献   
68.
We previously reported that aged mice lacking complement factor H (CFH) exhibit visual defects and structural changes in the retina. However, it is not known whether this phenotype is age-related or is the consequence of disturbed development. To address this question we investigated the effect of Cfh gene deletion on the retinal phenotype of young and mid-age mice. Cfh −/− mouse eyes exhibited thickening of the retina and reduced nuclear density, but relatively normal scotopic and photopic electroretinograms. At 12 months there was evidence of subtle astroglial activation in the Cfh −/− eyes, and significant elevation of the complement regulator, decay-accelerating factor (DAF) in Müller cells. In the retinal pigment epithelium (RPE) of young control and Cfh −/− animals mitochondria and melanosomes were oriented basally and apically respectively, whereas the apical positioning of melanosomes was significantly perturbed in the mid-age Cfh −/− RPE. We conclude that deletion of Cfh in the mouse leads to defects in the retina that precede any marked loss of visual function, but which become progressively more marked as the animals age. These observations are consistent with a lifelong role for CFH in retinal homeostasis.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号